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CHAPTER 1: INTRODUCTION
1.1 Background

Increasing global competition combined with product proliferation, dropping customer

loyalties, and shrinking product life-cycles is changing the environment facing most com-

panies today. None of the industries seem to be immune and retail and franchise sectors

seem to be particularly hurting. The number of retailers filing for bankruptcy protection in

the U.S. is headed toward its highest annual tally since the Great Recession in the 1920s

[Gustafson, 2017]. While the reasons for bankruptcies and difficulties are several, many

companies within these sectors are lacking comprehensive and effective performance man-

agement systems [Yu and Ramanathan, 2009]. These sectors have no doubt seen tremen-

dous efficiencies from employing in-store technologies (e.g., scanning systems, enhanced

point-of-sale systems, self-service lines) and information technology to drive upstream op-

erations (e.g., warehousing, logistics, and manufacturing) [King et al., 2004]. While these

technologies and the associated Retail Information Systems (RIS) are effective in helping

to manage core store activities (like inventory control and logistics), these chains also need

analytics platforms for performance management [Rigby, 2011, Nash et al., 2013]. The

term analytics refers to “the process of developing actionable insights through problem

definition and the application of statistical models and analysis against existing and/or sim-

ulated future data” [Cooper et al., 2012]. Retail analytics “is any process/information that

allows retailers to make smarter decisions and manage their businesses more effectively”

[dic, 2017].
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With the increasing availability of data and technologies to store and process the data,

business analytics has been experiencing growing attention among the researchers and is

transforming the way businesses operate in many sectors [Sun et al., 2017, Henke et al.,

2016]. In the context of retail and franchise networks, stores need customized analytical

guidance to improve profitability and sales of individual stores based on their specific loca-

tion, demographics, and environment. Executives are unanimous in voicing their concerns

over the lack of methods to assess store specific issues and derive equally specific insights

[Bucklin and Gupta, 1999]. Such guidance is key to important strategic management de-

cisions, including evaluation, promotion and development. Strategic resource-allocation

decisions, such as advertising budgets, store expansions/closings, are also based on man-

agement’s understanding of store performance drivers [Thomas et al., 1998].

[Parsons, 1994] makes the distinction between store efficiency and effectiveness. Ef-

ficiency refers to the relationship between inputs and outputs, while effectiveness focuses

on outputs relative to a particular objective. Productivity is the combination of efficiency

and effectiveness and is the focus of this study. [Thomas et al., 1998] note that productivity

studies demand several careful considerations. First, relevant individual store differences

must be considered within the platform to take into account advantages and disadvantages

of particular stores, e.g., location, competitive intensity [Kamakura and Ratchfrord, 1996].

Second, development is much more effective when specific practices can be observed and

transferred to other stores. Effective practices should be identified, described, and used

as benchmarks for less efficient stores. This is a key focus of this study and the pro-

posed method attempts to attribute (through modeling) variation in performance across a
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set of stores to the way the stores are managed (in particular, how the Key Performance

Indicators (KPI)s are managed using resources). Third, a distinction must be made be-

tween resources under the control of store vs. those they have little or no influence over

(e.g., local land/rent costs). In our proposed approach, we emphasis deriving recommenda-

tions around “actionable” KPIs (e.g., increasing advertising budget) vs. not so actionable

KPIs (e.g., changing store location or reducing overhead). Fourth, more than one outcome

usually needs to be considered because stores are responsible for multiple and sometimes

conflicting performance measures (e.g., dealership sales might be more important to an

automotive manufacturer vs. profits to the owner’s of the dealership). This is also ad-

dressed in this study through the use of multi-objective optimization methods for deriving

recommendations.

Numerous methods have been proposed for evaluating retail efficiency of individual

stores [Balakrishnan et al., 1994, Kamakura and Ratchfrord, 1996]. Past research has

shown that store performance is influenced by trade area demographic factors [Ingene and

Lusch, 1980], level of competition [Craig et al., 1984], retail atmospherics [Jain and Ma-

hajan, 1979], and promotions [Walters and MacKenzie, 1988]. Others have researched the

effect of internal retail environment including level of service and extended store hours

[Kumar and Karande, 2000] as well as overlapping trading areas [Pauler et al., 2009]. As

for methods, Data Envelopment Analysis (DEA) has been widely used for benchmark-

ing performance of retail stores [Kamakura and Ratchfrord, 1996, Donthu and Yoo, 1998,

Vyt, 2008]. Another common approach that is adopted by economists for evaluating the

efficiency of retail stores is using translog (Transcendental Logarithmic) cost function, a



www.manaraa.com

4

second-order approximation to a cost function that can be used to model how a firm com-

bines inputs to produce outputs [Caves et al., 1982, Kamakura and Ratchfrord, 1996].

The focus in this dissertation is to facilitate improvement in the performance of individ-

ual stores by relying on a data-driven approach to internal benchmarking. In particular, the

goal is to identify factors driving automotive dealership performance in comparison with

“similar” dealerships and relying on optimization to derive tailored recommendations. The

problem was brought to our attention by a global leader in providing automotive dealer-

ship location and network analysis to many automotive Original Equipment Manufactur-

ers (OEM)s.

In the automotive industry, dealer efficiency and effectiveness are key factors for ob-

taining and maintaining competitiveness for OEMs. This is just as critical for the well-

being and durability of dealers, for most dealerships tend to be franchises (in the U.S.

and much of the world) that have a contract with an automotive OEM that allows them

to sell its products. It is critically important to establish analytics platforms for assess-

ing the productivity of the dealer network that is not only useful for the OEM but also

provide customized guidance to individual dealerships. Automotive OEMs usually assess

dealership performance according to market share and plan incentive systems by assigning

annual sales targets to each dealership. However, performance assessment based on sim-

plistic comparison between the dealership and national or state average market share can

not only lead to ineffective sales targets but could also compromise the productivity of the

dealer and the competitiveness of the OEM [Biondi et al., 2013]. As noted by Biondi and

co-authors, this kind of assessment does not take into account either the availability or the
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utilization of resources. Dealership A may be more efficient than dealership B according

to the market share method, although A can obtain a higher output than B (i.e., sell more

vehicles) merely because A has a more consolidated presence in the territory (i.e., has had

a sales mandate for longer) and/or is located in a more favorable geographical market (e.g.,

where the brand enjoys more loyalty). Therefore, a more objective modeling and analysis

platform is necessary for evaluating and improving the performance of dealerships.

  

Retail 
Store 
Data 

(Internal, 
External)

KPI Selection and 
Performance Modeling 

Multi-
Objective 

Optimization

Tailored 
Recommendations 
to Improve Store 

Productivity

Figure 1.1: Retail Performance Analytics Platform

1.2 Motivation

The company wanted to develop a dealership performance management analytics plat-

form to analyze monthly operations and financial data (including information on sales

staffing levels/tenure, product assortment/mix, dealer services (e.g., financing, trade-ins,

collision repair), advertising budgets/mix, service bays/technicians etc.) from thousands

of dealers in the U.S. to understand factors that can jointly improve profitability for the

dealership while also improving vehicle sales to satisfy OEM requirements. In the ab-

sence of objective data-driven analytics platforms, dealerships mostly rely on experienced

consultants and ad hoc guidance from field personnel. We propose effective model-based

methods for clustering the stores into similar groups for benchmarking. Figure 1.1 illus-

trates our overall approach.
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1.3 Contribution

Our contributions are as follows: 1) We propose an objective method for segmenting re-

tail stores (in particular, automotive dealerships) using a model-based clustering technique

that accounts for similarity in store performance dynamics, 2) We propose an effective Fi-

nite Mixture of Regressions (FMR) technique based on competitive learning for carrying

out the model-based clustering and modeling store performance, 3) While the competitive

learning technique proved to produce good results for the dealership case study, we also

provide an exact Expectation Maximization method to this problem through what we called

Group Mixture of Regressions (GMR), and 4) We propose an optimization framework to

derive tailored recommendations for individual stores within store clusters that jointly im-

proves profitability for the store while also improving sales to satisfy OEM/franchiser re-

quirements. We illustrate the methods using synthetic experiments and a real-world dataset

from a leading global OEM.

1.4 Outline

The rest of the dissertation is organized as follows: Chapter 2 describes the proposed

mixture model with completive learning MMCL for the problem of finite mixture of regres-

sions (FMR) under group structure constraints, Chapter 3 provides solution to the same

problem using Expectation Maximization (EM), Chapter 4 describes a method for deriving

tailored recommendations using cluster specific component models using multi-objective

optimization, Chapter 5 describes results from a dealership case study, and Chapter 6 offers

some concluding remarks and directions for future research.
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CHAPTER 2: MIXTURE MODELS
WITH COMPETITIVE LEARNING
2.1 Introduction

As mentioned in the Introduction chapter, the motivation for this research stems from

assisting a supplier of strategic and operational planning solutions for the automotive sector

who is a leader in providing dealership location and network analysis to many automotive

OEMs. Beside external factors (e.g., demographics and proximity of competitive dealers),

we believe that internal factors (e.g., product carried, quality of workforce, operational

processes) that are under more control of the management are also at play. Given our desire

to model the performance of dealerships as a function of the KPIs, we need to explicitly

handle the presence of dependent variables (e.g., standardized dealership sales and profits

calculated relative to averages).

Therefore, we provide a solution for clustering the dealerships into sub-groups by con-

sidering both internal external factors. The general idea, which can be employed in clus-

tering any groups of observations (e.g. stores, products, etc.) is presented in this chapter.

2.2 FMM: Background

Clustering is the process of finding subsets of a dataset based on “similarity”, where

members of the subsets are similar and members across subsets are dissimilar [Guha and

Mishra, 2016]. There are several algorithms that have been proposed for the clustering

problem [Xu and Wunsch, 2005]. Traditional clustering methods for the most part are

heuristic techniques derived from empirical methods and have difficulty taking into ac-
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count the characteristics of clusters (shapes, proportions etc.). Finite mixture models have

attracted much attention in recent years for clustering. [McLachlan and Basford, 1988]

were the first to highlight the usefulness of mixture models as a way of providing an ef-

fective clustering of various datasets under a variety of experimental designs. They offer

considerable flexibility and permit certain classical criteria for vigorous analysis and have

been widely used for market segmentation and similar studies [Green et al., 1976, Gupta

and Chintagunta, 1994, Jedidi et al., 1997, Andrews et al., 2011, Wedel and Desarbo, 2002,

Sarstedt, 2008, Tuma and Decker, 2013a].

One of the challenges in modeling certain populations is that the observations might

be drawn from different distributions/processes underlying the overall population. In such

cases, a “single” model may fail to efficiently represent the sample data and therefore the

accuracy and reliability of the model might suffer. This problem has been identified more

than hundred years ago [Newcomb, 1886, Pearson, 1894] and “mixture” models were intro-

duced in order to better account for the unobserved heterogeneity in the population. Since

those early days, a lot of effort has gone into developing new methodologies and to fur-

ther improve the modeling. In recent years, due to increasing availability and diversity of

data, the topic has experienced an increasing attention by researchers. Mixture models have

been successfully employed in a variety of diverse applications such as speech recognition

[Reynolds et al., 1995], image retrieval [Permuter et al., 2003], term structure modeling

[Lemke, 2006], biometric verification [Stylianou et al., 2005], and market segmentation

[Tuma and Decker, 2013b].

In mixture models, “components” are introduced into the mixture model to allow for
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greater flexibility in modeling a heterogeneous population that is apparently unable to be

modeled by a single model. The hope is that this form of clustering would allow for more

effective modeling and comparison of stores within individual clusters and for recogni-

tion/extraction of effective practices to be used as benchmarks for less efficient stores.

In mixture models, it is assumed that the observations are generated according to several

probability distributions (a.k.a. components) with certain parameters. Data points in each

distribution are assumed to form a cluster. The general framework of FMMs is of the

following form:

f(x) =
K∑
k=1

αkf(xk; θk) (2.1)

where k is the number of mixture components, αk is the mixing weights (αk > 0 and∑
k αk = 1), θk is the set of parameters for the kth component, and f(xk; θk) is the distribu-

tion of the kth component. Each component k is assumed to come from a unique f(xk; θk),

which is some probability distribution, with probability αk that an observation comes from

component k. In the case of mixture of Gaussian distributions, f(xk; θk) ∼ N (µ,Σ),

where µ and Σ denote the mean and covariance matrix for each component distribution,

respectively.

Among the family of mixture models, the finite mixture of regression (FMR) models

have been particularly popular in various fields and applications [Bierbrauer et al., 2004,

Andrews and Currim, 2003, Bar-Shalom, 1978], mainly because of the advantages of linear

models such as simplicity, interpretability, and scientific acceptance. In FMR, it is assumed
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that the distribution of the data can be represented using a convex combination of a finite

(K) number of linear regression models. Equivalently, each observation belongs to one the

K classes, and given the class membership, it follows the regression model associated with

that class. The difficulty is that the class memberships are not known in advance.

Assuming that the dataset consists of n observations (yi, xi), i = 1, . . . n, let yi denote

the value of response variable for the ith observation, and xi the corresponding p×1 vector

of independent variables (for brevity, we exclude the intercept from the notation). Let

y = (y1, y2, . . . , yn) ∈ Rn be the response vector, and X = (x1, x2, . . . , xn) ∈ Rn×p the

design matrix. Then we can write:

yi =
K∑
k=1

αkφ
(yi − xiβk

2σ2
k

) k = 1, ..., K (2.2)

where φ is the normal density with mean xiβk and variance σ2
k, βk is the regression coeffi-

cient of the kth component, K is the number of linear regression models (i.e. components),

and αk is the mixture probability (the proportion of kth component with respect to the total

population;
∑K

k=1 αk = 1 ). Here, we assume that K is known in advance. The ultimate

objective is to estimate the parameters of the mixture model. In the case of FMR, the

parameters to be estimated are: Θ = (π1, . . . , πK , β1, . . . , βk, σ1, . . . , σk).

[Quandt and Ramsey, 1978] proposed a method of moment algorithm to estimate the

parameters of FMR with the presence of a dependent variable. In this setup, it is assumed

that the data points (X ∈ IRp) have an associated dependent variable (Y ∈ IR), and the

relation between X and Y is linear: Y = Xβ. Therefore, using FMR for modeling and
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clustering the dealerships would be beneficial.

[Wedel and DeSarbo, 1995] proposed a maximum likelihood solution to extend FMR

to Generalized Linear Models (GLM). Since then, several extension for mixture of GLMs

has been proposed in the literature (see [Grün and Leisch, 2008], [Raim et al., 2017], [Raim

et al., 2017], [Hannah et al., 2011]).

2.2.1 FMR with Group Structure

Under regular FMR, the outcome is a mixture model that provides class membership

for each observation of the dataset along with probability (proportion) for each component

and the parameters of the model. This results in (soft) clustering the observations into K

clusters, assuming K components are employed. In some applications however, instead

of individual observations, groups of observations need to be clustered or associated with

the same component. For example, if FMR is being employed to model data from a re-

tail chain, it might be necessary to associate all observations stemming from any single

store to the same component. This problem is similar to what is known as ”clustering with

must-link constraint”, which is introduced by Wagstaff and Cardie (2000) in the literature

[Wagstaff et al., 2001]. The main idea is to utilize experts domain knowledge prior to clus-

tering process in order to obtain desired properties from the clustering solution. Figure 2.1

illustrates the concept. The data points are synthetically generated using two components:

y1 = 1
2
x + ε1 and y2 = 3

4
x + ε2, where x ∼ N (0, 1), ε1 ∼ N (0, 0.5), and ε2 ∼ N (0, 0.3).

Figure 2.1a shows the linear relationship between the two groups (y1 and y2), without any

grouping (must-link) structure. In figure 2.1b, the data points are linked to create six (6)

groups (groups 1-3 belong to y1 and groups 4-6 belong to y2). The data points with the
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same color refer to the same group. The desired outcome is that all the data points in the

same group end up having the same class membership. See [Basu, 2009] for an extensive

review of constrained clustering algorithms and applications.

(a) (b)

Figure 2.1: FMR with “group” structure constraints: (a) Synthetic, two component FMR
without any constraint. (b) The same data points being divided into six groups where each
group has to retain its data points.

To the best of our knowledge, all the existing algorithms have solved the problem of

clustering with group structure in unsupervised/semi-supervised settings, meaning that the

observations lack (or partially lack) the dependent variable. In other words, we could not

find any work that addresses FMR with grouping structure. Also, most of the solutions

that are provided to solve this problem in the literature are parametric, where there are

assumptions on the distribution of the data, and the solutions estimate the parameters of

the distribution. In this work, we provide a non-parametric solution to FMR with grouping

structure. The advantage of our proposed algorithm is that it can be employed with any

prediction technique (i.e. Support Vector Machine (SVM) regression, random forest, neural

networks, etc.), a significant advantage when modeling data with non-linear relationship.
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2.3 Mixture Model with Competitive Learning

In this section, we propose an algorithm that relies on “Competitive Learning (CL)”

for FMR with group structure constraints, labeled Mixture Model with Competitive Learn-

ing (MMCL). Later sections illustrate how this algorithm can be employed to address the

problem of automotive dealership clustering and performance management. We also offer

guidance on parameter initialization for MMCL.

2.3.1 Competitive Learning

Competitive learning is a form of unsupervised learning originating in the domain of

artificial neural networks, in which nodes of the network compete for the right to respond

to a subset of the input data [Rumelhart et al., 1988]. A variant of Hebbian learning,

standard competitive learning algorithms work by increasing the specialization of each

node in the network (typically composed of a single layer of neurons) and is well suited

to finding clusters within data. There are three basic elements to the standard competitive

learning rule [Haykin et al., 2009]: 1) A set of neurons that are all the same except for

some randomly distributed synaptic weights, and which therefore respond differently to a

given set of input patterns; 2) A limit imposed on the ‘strength’ of each neuron, and 3) A

mechanism that permits the neurons to compete for the right to respond to a given subset

of inputs, such that only one output neuron, is active (i.e. ‘on’) at a time. Typically, the

neuron that wins the competition is called a “winner-take-all” neuron. Accordingly, during

the training cycle, the individual neurons of the network learn to specialize on ensembles

of similar patterns and in so doing become “feature detectors” for different classes/clusters
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of input patterns.

In what follows, we adapt the standard competitive learning algorithm to the more

general model setting of FMR.

2.3.2 MMCL Algorithm

Let D be the complete set of data points and M the number of distinct groups within

D (e.g., data from each dealer forms an observation group). Define S as the set that holds

all the groups: S = {si}Mi=1. Each group si, with ni observations, has to retain all its

members when assigned to a cluster, forming the group structure constraints. The goal is

to assign each si to one of K clusters. Ideally, the dataset is partitioned into training and

testing datasets, where a subset of the data from each group is stored in the testing dataset

for testing and improving model robustness.

Assuming that the number of components K is known, the proposed MMCL iterative

algorithm starts by randomly selecting K groups (out of M ) for initializing the clusters,

and fitting one model using observations in each group to get a function fi(x; θ) for each

i ∈ 1, ..., K. In the event the individual groups are too small to learn the initial model for

each cluster component, one can randomly assign multiple groups to each component for

initialization. This approach is generic in that the component model can be of any type, e.g.

linear regression, Least Absolute Shrinkage and Selection Operator (LASSO), multi-layer

perceptron, support vector machine, etc. Next, all the groups si ∈ S are selected one at a

time, and are predicted using each of the K models. The group is assigned to one of the

K cluster components that produces the best performance; this is “competition” portion of

the MMCL.
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For performance assessment, one can employ several criteria based on the component

model, such as, the Sum of Squared Errors (SSE) of prediction, Bayesian Information Cri-

terion (BIC), or Akaike Information Criteria (AIC), on a held out testing dataset. Perfor-

mance is evaluated on the testing dataset and not the training dataset to reduce the chance

of over fitting. In our experiments with linear regression component models, AIC provided

robust performance. Founded on information theory, given a collection of models for the

data, AIC estimates the quality of each model relative to each of the other models. In doing

so, it deals with the trade-off between the goodness of fit of the model and the complexity

of the model and is one of the most common model selection procedures that is available

in most statistical software packages [Chaurasia and Harel, 2012]. Akaike stated that mod-

eling is not only about finding a model which describes the behavior of the observed data,

but its main aim is predicated as a possible good, and the future of the process is under

investigation [M., 2014]. The AIC is calculated as:

AIC = −2lf (θ̂) + 2k (2.3)

where lf (θ̂) is the maximum value of the likelihood function of the model with parame-

ters θ̂. Given that models with minimum AIC are preferred, AIC employs the term 2k to

penalize complex models with more parameters.

Without loss of generality, in the rest of the manuscript, we assume that AIC is the

criterion for cluster component competition within MMCL.

After assigning each group to the cluster with the best (i.e., minimum) AIC, the “Overall
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AIC” is calculated as the sum of the Cluster AICs: Overall AIC =
∑K

j=1Cluster.AICj .

In the next iteration, the process is repeated and this time the K component models are

learnt using all the aggregated observations (that consist of several groups) within each of

K clusters; this is the “learning” portion of MMCL. The updated models will compete in

the same fashion as described above, to select the cluster members that produce the lowest

AIC. This process is repeated until algorithm convergence (e.g., no changes in cluster group

memberships between iteration t and t + 1 and/or the resulting Overall AIC) or if the

maximum number of iterations has been reached. This is a common approach to stop

searching in most of the meta-heuristic optimization methods [Safe et al., 2004].

Let us denoteMj as the jth model (that is built using the observations in jth cluster)

andAMj ,si as the AIC value resulting from predicting the response values in group si using

modelMj . The ultimate goal is to predict a label c(i) for each group si. We can write the

algorithm in the form of an optimization problem as follows:

c(i) = argmin
j
AMj ,si (2.4)

It can be seen that MMCL is a special version of the famous k-means clustering [Steinhaus,

1956], with the distance defined as the AIC of predictive models.

In the case of a linear regression component model, Eqn. 2.4 can be written as:

c(i) = argmin
j

nlog

∣∣∣∣RSSMj ,si

ni

∣∣∣∣+ 2p (2.5)

where p is the number of parameters in the model and RSSMj ,si =
∑ni

l=1 (ŷMj ,sil − ysil)2
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is the residual sum of squares resulting from predicting response variables in group si using

modelMj . It is easy to observe that the with a minor modification, any stopping criteria

and model selection technique can be used.

The Psuedo code for MMCL is provided in Algorithm #1.

Algorithm 1 MMCL for FMR with Group Structure Constraints
procedure – COMPETITIVE LEARNING

Initialize AIC to a large value (e.g., 1010) and ε to a small value (e.g., 0.001)
Randomly select K observation groups for initializing each of the cluster compo-

nent models
repeat

AICOld = AIC
Learn the K component models using observations assigned to the K clusters
for each group si ∈ S do

Make predictions for selected group using each of K models and record
AIC

Assign si to cluster with the least AIC
end for
Calculate Cluster.AICj , ∀j = 1, . . . , K

AIC =
∑K

j=1Cluster.AICj
until convergence (i.e., |AIC−AICOld

AICOld
| < ε )

end procedure

2.3.3 Initializing MMCL Parameters

There are three main parameters that need to be selected prior to applying MMCL:

1) Number of clusters K: An existing method such as BIC, Calinsky criterion, Gap

Statistics, etc. can be used. With the existence of response variables (supervised

learning), it is recommended to divide the data to train and test sets and select K that

yields the best result.

2) Initializing K clusters: This is a critical step as it effects both the convergence and

effectiveness of the algorithm. One of the existing methods such as k-means++
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[Arthur and Vassilvitskii, 2007] can be adopted to develop an algorithm that wisely

selects the initial cluster groups. k-means++ has two steps for selecting the cluster

centroids:

a. Select one center from the data points uniformly at random

b. Compute the distance D(x) between each data point and the centers that have

already been selected

c. Select a new center with probability proportional to D(x)2

d. Repeat steps (a) and (b) until all K centers are selected

e. Apply k-means using the selected points as initial cluster centroids

Inspired by k-means++, the following initialization algorithm (labeled MMCL++) is

developed to select the initial groups. It tries to smartly choose the groups so that the

selected groups have maximum dissimilarity. This is achieved by selecting a group

sj ∈ S at random and predicting all the remaining groups using the modelMj that

is developed by the observations in that group. The quality of prediction for all the

remaining groups using Mj is evaluated, and the group si, i 6= j that Mj has the

least power predicting it is identified as the candidate that has the maximum distance

with si. Again, different criterion such as correlation between si and sj , RSS of

Mj, si, etc. can be used for this purpose.

3) Parameters of the models θ: With the current version of the algorithm, the parameters

of the models can only be optimized using cross validation.
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Algorithm 2 MMCL++ Initialization Algorithm
repeat

Select one observation group sj ∈ S at random
Learn modelMj using the observations in sj
Predict remaining groups si, i 6= j using Mj and calculate

AMj ,si ,∀ i = {1, . . . ,M} ∧ i 6= j
Select a new group si that has max(AMj ,si), i = {1, . . . ,M} ∧ i 6= j

until K groups are selected

2.4 MMCL Validation: Synthetic Experiments

To evaluate the effectiveness of the proposed MMCL algorithm for FMR with group

structure constraints, we employ Monte Carlo simulation experiments.

2.4.1 Experiment Setup

For the synthetic experiments, for ease of exposition, it was decided to use linear re-

gression as the modeling technique. The impact of different parameters on the result is

investigated. The experiment is conducted for the case K = 2 (number of clusters). Co-

variates (X) for each cluster are generated by drawing samples from a bivariate Gaussian

distribution: X ∼ N (µ,Σ), with zero mean and a diagonal covariance matrix with unit

variance.

Table 2.1: Monte Carlo Simulation Parameters (MMCL)

N S Noise Level d2

Cluster 1 300 5
(0.5, 1, 2, 4, 6) (0.2, 0.6, 1.8)

Cluster 2 300 15

Referring to the Monte Carlo Simulation Parameters outlined in Table 2.1, N = 300

is the total number of observations in each cluster and S is the number of groups (blocks)

in each cluster. Essentially, there will be 60 observations per group in cluster 1 and 20
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observations per group in cluster 2. The response variable for each observation is generated

by: yi = Xi
′
β + Noise level. The “Noise level” parameter is used to control the amount

of noise (uncertainty) added to the response variable y. It can also be seen as the parameter

that controls the Signal to Noise Ratio (SNR).

To study the effect of the degree of similarity between βs, the Euclidean distance (d2)

between β1 and β2 is calculated to control the level of separation for the two clusters (in the

response domain). That is: d2 =
∣∣|β1 − β2|∣∣2 =

∣∣|β1|∣∣2 +
∣∣|β2|∣∣2 − 2 〈β1, β2〉 = 2(1− r12),

where r12 = 〈β1, β2〉, assuming that
∣∣|β1|∣∣2 =

∣∣|β2|∣∣2 = 1 (βs have l2 norm of one). If

R=[1 r12; r12 1], and the matrix B is the Cholesky decomposition of R, then the ith row of

B is βi, with square distance d2 between β1 and β2. Obviously, the smaller d2, the closer

the βs, and it is harder to separate the clusters.

2.4.2 Results from MMCL

The Monte Carlo simulations are repeated a 1000 times for each pair of d2 and Noise

level. Normalized Mutual Information (NMI) is used for assessing the clustering accuracy.

NMI is a widely used technique in evaluating the clustering result when the true labels are

available. The advantage of using NMI is that it is independent of permutation, meaning

that the label switching does not affect the NMI score. It is bounded between zero and

one. The closer the value to zero, the higher the indication that the cluster assignments

are largely independent, while NMI close to one shows substantial agreement between the

clusters. An NMI value of zero simply means that the label assignment is purely random.

Figure 2.2a shows the average NMI (for 1000 runs) for different levels of noise and d2,

while Figure 2.2c shows the distribution of NMI among 1000 runs.
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(a) (b)

(c) (d)

Figure 2.2: MMCL Performance on Synthetic Datasets: (a) Average NMI for different
noise levels and d2 (random initial groups assignment). (b) Average NMI for different
noise levels and d2 using MMCL++. (c) Distribution of NMI for different noise levels and
d2 (random initial groups assignment). (d) Distribution of NMI for different noise levels
and d2 using MMCL++.
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(a) (b)

Figure 2.3: Evaluating MMCL Efficiency in Iterations: (a)Average number of iterations for
different noise levels and d2 (random initial groups assignment). (b) Average number of
iterations for different noise levels and d2 using MMCL++.

It is evident from Figures 2.2a and 2.2c that MMCL is able to achieve a high NMI value

(about 0.8) when the noise level is low. However, as expected, as the level of noise added

to the response is increased, it significantly affects the accuracy of clustering. With noise

level of four, the clustering is almost done in a random fashion. We can also observe the

effect of d2. As mentioned earlier, smaller d2 means that βs are closer and more similar to

each other. Figures 2.2a and 2.2c confirm that as d2 gets smaller, it is harder to correctly

cluster the observations.

Figure 2.3a shows the average number of iterations it took for MMCL to converge under

different scenarios. It can be seen that on average the algorithm converges within few

iterations. Note that the number of iterations is highly affected by the stopping criteria. As

mentioned earlier, the stopping criteria is based on the relative change in the overall AIC in

two consecutive iterations, i.e. |AIC−AICOld

AICOld
| < ε. In this experiment, ε is set to 0.001 and

the maximum number of iterations is set to 10.
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To observe the impact of careful initial group selection (MMCL++), we can compare

Figure 2.2a with 2.2b and 2.2c with 2.2d and note that there is a slight improvement in

the result when MMCL++ is utilized, especially when the noise level is low (0.5). Figures

2.3a and 2.3b compare the average number of iterations until convergence between random

initial group selection (a) and MMCL++ (b). The graphs clearly show the effectiveness of

MMCL++ in reducing the number of iterations, especially under low noise level.

2.5 Conclusion

In this study, we proposed a novel model-based clustering algorithm in the context of

Mixture Models with grouping structure (must-link constraint). Unlike most of the exist-

ing algorithms that are designed to statistically model and estimate the parameters under

different probability distributions, our proposed algorithm is non-parametric and can be

utilized with any predictive model (i.e. SVM regression, random forest regression, neural

networks, etc.) as the underlying regression model. In addition, the proposed method also

naturally supports any requirement that seeks to assign groups of observations to individual

clusters rather than individual observations. It is designed based on the idea of Competitive

Learning where the initial models compete each other for adding the groups to their own

cluster. Thus, we called the algorithm Mixture Model with Competitive Learning (MMCL).

MMCL is an iterative algorithm that tries to minimize an objective function (i.e. prediction

RMSE, prediction R2, AIC, BIC, etc.), and simultaneously assigns groups of observations

to form homogeneous clusters.

The proposed method is validated using synthetic experiments and proved to be effec-

tive in recovering the underlying clusters. In Chapter 5, we demonstrate the use of MMCL
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for clustering the dealership network.
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CHAPTER 3: GROUP MIXTURE OF
REGRESSIONS (GMR)
3.1 Introduction

As introduced in Chapter 2 of this dissertation, Mixture Models are used to model

complex densities by introducing a mixture of several probability distributions to represent

the underlying density. They have been widely used in various applications (see [Böhning,

2000], [McLachlan and Peel, 2004], [Lindsay, 1995]). We also introduced in Chapter 2

the notion of mixture models with group structure (a.k.a mixture models with must-link

constraint) and addressed the limitations and lack of methodologies to solve the Finite

Mixture of Regressnion (FMR) with group structure. A heuristic method to solve this

problem was also proposed in Chapter 2. In this chapter, we demonstrate a parametric

approach for solving this problem by modeling and applying Expectation Maximization

(EM) to FMR with group structure. We call the algorithm Group Mixture of Regressions

(GMR) models.

3.1.1 Estimating the Parameters for Mixture Models

While the parameter estimation in mixture models has been studied mainly from a like-

lihood point of view [De Veaux, 1989], [Quandt and Ramsey, 1978] used a moment gen-

erating function for estimating the parameters. However, maximum likelihood approach

using expectation maximization (EM) [Dempster et al., 1977] remains the most widely

used technique for estimating the parameters of FMR. EM approach tries to maximize

the likelihood in a way that in each iteration, it is guaranteed that the value of likelihood
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increases. Other algorithms such as stochastic EM [Celeux and Diebolt, 1985] and clas-

sification EM [Celeux and Govaert, 1992] have been introduced as an attempt to improve

the performance of the EM algorithm (see [Faria and Soromenho, 2010]). Others have

employed Gibbs sampler [Diebolt and Robert, 1994]), and Bayesian approach for estima-

tion [Hurn et al., 2003]. [Chaganty and Liang, 2013] employed low-rank regression with a

tensor power method as an alternative to EM algorithm for estimating the parameters.

3.1.2 Grouped Mixture of Regression Models

We assume that the observations belong to R known groups, denoted with labels [R] :=

{1, . . . , R}. In each group r ∈ [R], we observe nr samples (yri, xri), i = 1, . . . , nr where

yri ∈ R is the response variable and xri ∈ Rp is the vector of covariates or features. We

will write xrij to denote the jth feature in the feature vector xri. For the most part, we will

treat xri as deterministic observations, i.e., we have fixed design regression models.

We assume that there are K latent (unobserved) clusters such that all the observations

in group r belong to that cluster. Thus, we can assign a cluster membership variable zr ∈

{0, 1}K to each group r ∈ [R]. We will have zrk = 1 iff group r belongs to cluster k.

With some abuse of notation, we also write zr = k in place of zrk = 1. Given the cluster

membership variable zr, we assume that the group r observations are independent draws

from a Gaussian linear regression model with parameters specified by zr, that is,

p(yri | zr = k)
indept∼ N (βTk xri, σ

2
k), i = 1, . . . , nr, (3.1)

where βk ∈ Rp is the coefficient vector the kth regression model and σ2
k is the noise variance
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for component k. Note that we are assuming that the noise level only depends on the

underlying cluster and not on the group. We write β = (β1 | · · · | βK) ∈ Rp×K and

σ2 = (σ2
1, . . . , σ

2
K) ∈ RK .

As is common in mixture modeling, we assume that zr follows a multinomial prior

with parameter π = (πk), that is, P(zr = k) = πk for k ∈ [K], and z1, . . . , zR are drawn

independently. The joint distribution of yr and zr is then given by:

pθ(yr, zr) = pθ(zr)
nr∏
i=1

pθ(yri | zr) =
K∏
k=1

[
πk

nr∏
i=1

pθ(yri | zr = k)
]zrk

(3.2)

where we have let θ = (β, π, σ2) collect all the parameters of the model. From (3.1),

we have pθ(yri | zr = k) = φσk
(
yri − βTk xri

)
, where φσ(·) is the density of the Gaussian

distribution N (0, σ2). Therefore, the so-called complete likelihood of θ given (z, y) is:

L(θ | y, z) = pθ(y, z) =
R∏
r=1

pθ(yr, zr) =
R∏
r=1

K∏
k=1

[
πk

nr∏
i=1

φσk
(
yri − βTk xri

)
︸ ︷︷ ︸

=: γrk(θ)

]zrk
(3.3)

The parameter γrk(θ) in (3.3) is proportional (in k) to the posterior probability of zr given

the observation yr, that is, pθ(zr = k | yr) ∝k pθ(yr, zr = k) = γrk(θ). By normalizing

γrk(θ) over k, we obtain the posterior probability of cluster assignments:

pθ(zr = k | yr) =
γrk(θ)∑
k′ γrk′(θ)

=: τrk(θ), (3.4)

for any k ∈ [K] and r ∈ [R]. We note that the overall posterior factorizes over groups, i.e.,
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pθ(z | y) =
∏

r pθ(zr | yr), so it is enough to specify it for each pair zr and yr. Thus, τrk(θ)

is the posterior probability that group r belongs to cluster k, given all the observations y.

These posterior probabilities are key estimation objectives. An estimate θ̂ = (β̂, φ̂, σ̂2)

of θ can be obtained by maximizing (3.3). The classical approach to performing such

optimization is by the Expectation Maximization (EM) algorithm, the details of which will

be given in Section 3.1.4. Once we have the estimate θ̂ of the parameters, we can calculate

an estimate of the posterior probabilities as τrk(θ̂).

3.1.3 Posterior Prediction with GMR

Now assume that we have new test data point (yr,new, xr,new) in group r, for which we

observe only the feature vector xr,new and would like to predict yr,new. Let (ytrain, xtrain) de-

note all the observations used in the training phase. The common link between the training

and test data points are the latent variables z1, . . . , zR. In other words, since we already

have a good estimate of the membership of group r based on the training data (via the

posterior (3.4)), we can get a much better prediction of yr,new than what the prior model

suggests. More precisely, we have the following predictive density for yr,new based on ytrain,

pθ(yr,new | ytrain) =
∑
zr

pθ(yr,new | zr) pθ(zr | ytrain).

Since, pθ(zr = k | ytrain) = pθ(zr = k | ytrain
r ) = τrk(θ), we obtain the following estimate

of the predictive density pθ(zr = k | ytrain) = pθ(zr = k | ytrain
r ) = τrk(θ). Note that θ̂ is

our estimate of the parameters based on the training data (ytrain, xtrain). In particular, the

posterior mean based on (3.4) is
∑K

k=1 τrk(θ̂) β̂
T
k xr,new which serves as the maximum a
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posterior (MAP) prediction for yr,new.

Since the membership group of the new observation is known, we obtain a predictive

density for new observations. Thus, we can utilize the group information acquired during

training phase. Therefore, we can achieve a better prediction accuracy using the (posterior)

latent cluster assignment. This does not happen in usual FMR and is the strength of the

proposed GMR.

3.1.4 Parameter Estimation

Let us now derive the EM updates for the model. Recalling (3.3), the complete log-

likelihood of the model is `(θ | y, z) = log pθ(y, z) =
∑R

r=1

∑K
k=1 zrk log γrk(θ) or

`(θ | y, z) = log pθ(y, z) =
R∑
r=1

K∑
k=1

zrk

[
log πk +

nr∑
i=1

log φσk
(
yri − βTk xri

)]
. (3.5)

Treating the class latent memberships {zr} as missing data, we perform the EM updates to

simultaneously estimate {zr} and θ:

E-Step: We replace (3.5) with its expectation under the approximate posterior of {zr}:

F (θ; θ̂) := Ez∼τ(θ̂)[`(θ | y, z)] =
R∑
r=1

K∑
k=1

τrk(θ̂) log γrk(θ) (3.6)

using Ez∼τ(θ̂)[zrk] = τrk(θ̂), where τrk(θ) is the posterior given in (3.4).

M-Step: We maximize F (θ; θ̂) over θ, giving the update rules for the parameters θ =

(β, π, σ2).

To derive the update rules, we maximize F (θ; θ̂) by a sequential block coordinate as-
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Algorithm 3 Grouped mixture of regression (GMR)

1: Compute feature covariances for each group: Σ̂r ← 1
nr

∑nr

i=1 xrix
T
ri

2: Compute feature-response cross-covariances: ρ̂r ← 1
nr

∑nr

i=1 yrixri

3: For any class posterior τ = (τrk) define the following weights:

τ+k(τ) :=
∑
r

τrk, wrk(τ) := nrτrk, w+k(τ) :=
∑
r

wrk, w̌rk(τ) :=
wrk
w+k

.

and the weighted covariances: Σ̃k(τ) :=
∑R

r=1 w̌rkΣ̂r and ρ̃k(τ) :=
∑R

r=1 w̌rkρ̂r.
4: For any parameter θ = (π, β, σ2) and class posterior τ = (τrk), define the errors:

Erk(β) :=
1

nr

nr∑
i

(yri − βTk xri)2, Ek(β, τ) :=
∑
r

w̌rk(τ)Erk(β)

5: while not converged do
6: Update class frequencies: πk ← τ+k(τ)/R, k ∈ [K]

7: Update regression coefficients: βk ← Σ̃−1k (τ) ρ̃k(τ), k ∈ [K]

8: Update noise variances: σ2
k ← Ek(β, τ), k ∈ [K]

9: Update class memberships: τrk ← τrk(θ), as given in (3.4),r ∈ [R], k ∈ [K]

10: end while

cent, in each step maximizing over one of the three sets of parameters π, β and σ2, while

fixing the others. The updates are summarized in Algorithm 3. The details can be found in

Appendix .1.

3.2 Empirical Analysis

A Monte Carlo simulation study was performed to assess the quality of the GMR algo-

rithm. The results of this study is presented in this section.

3.2.1 Synthetic Data Experiments

To evaluate the effectiveness of the EM algorithm for FMR with group structure con-

straints, we employ Monte Carlo simulation and modeling experiments.
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Table 3.1: Monte Carlo Simulation Parameters

K d G n Noise Level (σk) β-distance (δβ)
2 2

10 (100, 200, 400, 800) (2, 4, 6, 8, 10) (4, 7, 11)
4 (2, 4)

Experiment setup. We generate the synthetic data from the GMR model (3.1) with a

random design where we generate the feature vectors by drawing each xi ∼ N(0,Σ),

where Σ is drawn from a normalized Wishart distribution. Recall that K is the number of

clusters (or mixture components) and R the number of groups. We will use equal number

of observations per group, that is, nr is the same for all r = 1, . . . , R. Letting n =
∑R

r=1 nr

be the total number of observations, we will have nr = n/R = R/K in that case. Let

Gk be the number of groups in cluster k. In general,
∑K

k=1Gk = R; here, we will take

all Gk equal so that Gk = G := R/K. Thus, it is enough to specify n,Gk, and K. Table

3.1 summarizes various setups used in our simulations. We recall that p is the dimension

of the feature vectors xi (p) and “the noise level” is equivalent to σk in (3.1). In each

case, the number of groups R and the number of observations per group nr is determined

by the number of clusters K, number of groups in each cluster Gk, and total number of

observations n. For example, for n = 800, Gk = 10, and K = 2, we have R = 20 and

nr = 40.

To study the effect of heterogeneity among regression coefficient vectors βk, k ∈ [K],

we take βks to be equi-distant points on a hyper-sphere in Rp and vary their common

distance, denoted as δβ . More precisely, we will have ‖βk‖ = ‖β`‖ and ‖βk − β`‖ = δβ

for all k 6= `. Generating βs this way enables us to compare the estimation errors among

different runs of the experiment. The comparison can be carried out across different setups
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by normalizing the calculated error, e.g. by the β-distance. Three values of β-distance

that are found to be sufficient for our purposes are selected (cf. Table 3.1). Obviously, the

smaller the distance, the closer the βs, and it is harder to separate the clusters.

This setup is designed so that the data points are not easily separable in the input and

output (X and y) space. The degree of separation is only controlled by β-distance while

the noise level (σk) controls the uncertainty in relation between X and y. Figure 3.1 shows

samples of the generated data for different scenarios.

          

                                                       

                                              (a)                                                                                              (b)         

Figure 3.1: Sample of the generated data for simulation for the case p = k = 2: Covariates
X (top left); the response values y (top right); 3d plot for the X and y (bottom): (a) δβ = 4,
(b) δβ = 12

Evaluation criteria. The Monte Carlo simulation and modeling experiments are repeated

1000 times for each pair of β-distance and the noise level as well as pairs of d and K. Four

criterion are used to benchmark the performance of the algorithm: (1) Normalized mutual
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information (NMI) for assessing the clustering accuracy, (2) Average β estimation error,

(3) Root Mean Squared Error (RMSE) of prediction to assess the prediction power of the

models, and (4) Number of iterations to study the rate of convergence and the speed of the

algorithm.

As mentioned earlier in Chapter 2, NMI is an effective metric for evaluating the qual-

ity of clustering algorithms when the true labels are available. It is not affected by label

switching and penalizes partitions close to random quite aggressively. NMI is bounded

between zero and one, where higher values of NMI indicate more agreement between the

true and recovered cluster memberships. Note that the output of GMR provides probability

of belonging to each groups 1, . . . , K. In particular, the resulting τrk holds soft labeling

information. We use Maximum a Posterior (MAP) rule to turn the soft labels to hard la-

bels. For example,if c(r) denotes the assigned (MAP) class membership of group r, then

c(r) = argminτrk
k

.

“β estimation error” is used as another measure of goodness of fit. We calculate this

error by considering both the distance between the true and estimated βs, as well as the

miss-classification error. More precisely, to each group r, we can assign two regression

coefficient vectors, the estimated one β̂(r), and the true one β(r); β̂(r) is equal to β̂k if we

have estimated group r to be in cluster k. Similarly, β(r) is equal to βk if group r is in true

cluster k. We can define the average β estimation error as:

avg errβ :=
1

R

R∑
r=1

‖β̂(r) − β(r)‖2 = tr(DTF ) (3.7)
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where D =
(
‖β̂k − β̂`‖2, k, ` ∈ [K]

)
is the K ×K matrix of pairwise squared distances

between β̂ks, and F is the confusion matrix between the estimated and true labels. The

details for the second equality can be found in Appendix .2. Prediction RMSE is obtained

by designating a hold-out (or test) set and using the trained models to predict the responses

over the hold-out set. In each simulation run, 80% of the observations in each group is used

for training the model, while 20% is used as hold-out set to assess the prediction power.

3.3 GMR Results

In this section, we report in detail the results from the simulation and modeling experi-

ments. Each factor of the study is presented in a sub-section.

3.3.1 β-Distance (δβ) and Noise Level (σk)

Figure 3.2 is the result of running the simulation and modeling experiments with N =

100, p = 2, and K = 2, a 1000 times. Referring to figure 3.2, we can see that increasing

σk (decreasing the signal to noise ratio) causes the performance of the algorithm to decline.

This is also the case with δβ , where we can see that the more separable the true βs of the

two components, the easier it gets to estimate and thus decreases the error of the algorithm.

We can notice that at noise level (σk) of 10, and δβ of 4, NMI (figure 3.2a) becomes close to

zero, indicating that most of the times the algorithm fails to recover the true clusters. Figure

3.3 proves this conclusion by showing the same information for the case N = 200, p = 4,

and K = 4.
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(a) (b) (c)

Figure 3.2: The effect of δβ and σk for the case N = 100, K = 2, p = 2; each colored line
in a plot represents different vsalue of δβ , X axis shows different values of σk, and y axis
shows: (a) average NMI, (b) average β estimation error, (c) average RMSE for prediction,
for 1000 replications of the simulation and modeling experiment

(a) (b) (c)

Figure 3.3: The effect of δβ and σk for the case N = 200, K = 4, p = 4; each colored line
in a plot represents different value of δβ , X axis shows different values of σk, and y axis
shows: (a) average NMI, (b) average β estimation error, (c) average RMSE for prediction,
for 1000 replications of the simulation and modeling experiment
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3.3.2 Dimensionality (p) and Number of Clusters (K)

Figure 3.4 shows the NMI result for different combinations of p and K, with N = 400.

Figure 3.4a and 3.4b, compare the result when K is fixed (K = 2) and the dimensionality

is changed from p = 2 in 3.4a to p = 4 in 3.4b. Comparing the two plots, we can see

slight improvement in the case where p = 4. To study the effect of increasing K, we can

compare figures 3.4b and 3.4c, where p is fixed (p = 4, and K is increased from K = 2

(figure 3.4b) to K = 4 (figure 3.4c). We can clearly see that the accuracy decreases in all

cases (combinations of δβ and σk). This is consistent with the fact that as the number of

clusters (K) increases, it is always harder to recover true clusters.

Figure 3.5 illustrates the impact of K and p on β estimation error. By comparing the

plots in figure 3.5, it is hard to find a consistent pattern for β estimation error behavior with

respect to p and K. What could be noticed is that in the case where K = 2 and p = 2, the

error is less sensitive to increasing the noise (σk). However, the error stays higher when the

noise is smaller (between 2-6). In the case of σk = 10, the highest error belongs to the case

K = 4, p = 4.

3.3.3 Number of Observations (N )

Figure 3.6 shows the average β estimation error for different number of observations

(N ). As mentioned earlier, with a fixed value for the number of groups (G), increasing/de-

creasing N causes the number of observations per group (nr) to decrease/increase. By

looking at figure 3.6, we observe that increasing N results in improving the quality of es-

timation (lowering β error) in all cases. Referring to figure 3.6, it is also observed that
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(a) (b) (c)

Figure 3.4: The impact of K and p on NMI for the case N = 400; each colored line in
a plot represents different vsalue of δβ , X axis shows different values of σk, and y axis is
average NMI for: (a) K = 2, p = 2, (b) K2, p = 4, (c) K = 4, p = 4, for 1000 replications
of the simulation and modeling experiment

(a) (b) (c)

Figure 3.5: The impact of K and p on β estimation error for the case N = 100; each
colored line in a plot represents different vsalue of δβ , X axis shows different values of σk,
and y axis is average NMI for: (a) K = 2, p = 2, (b) K = 2, p = 4, (c) K = 4, p = 4, for
1000 replications of the simulation and modeling experiment
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(a) (b)

(c) (d)

Figure 3.6: Impact of N ; showing the average β estimation error for (a) N = 100, (b)
N = 200, (c) N = 400, (d) N = 800, for 1000 replications of the simulation and modeling
experiment

increasing N makes the results less sensitive to δβ and σk.

Number of Iterations One of the important factors to determine the effectiveness of an

algorithm is its speed of convergence, which determines its ability to be applied especially

to high dimensional datasets. Since the speed depends on several factors such as the plat-

form, the quality of coding, hardware, etc. it is hard to report an accurate speed for an

algorithm. We report the average number of iterations for GMR convergence in each sce-
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nario as an estimated indicator for the speed of the algorithm.

Stopping Criteria The stopping rule is chosen to be the relative change in posterior prob-

ability of cluster assignments (τrk(θ̂) in equation (3.4)). In particular, if we call τ (t)rk the

posterior probabilities at iteration t, then the algorithm stops when
∥∥∥τ (t−1)rk − τ (t)rk

∥∥∥
∞
< ε,

where‖.‖∞ is the infinity norm (maximum absolute row sum), or the maximum number of

iterations has been reached. In our setup, ε is set to 10−6 and maximum number of iterations

is set to 200. Figure 3.7 shows average number of iterations for selected scenarios.

(a) (b) (c)

Figure 3.7: Average number of iterations (N = 800) for: (a) K = 2, p = 2, (b) K = 2,
p = 4, (c) K = 4, p = 4, for 1000 replications of the simulation and modeling experiment

Tables (3.2–3.5) provide full details of the results for the conducted simulation and

modeling experiments mentioned in this section.
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3.3.4 Selecting Optimal Number of Components K

Selecting the number of components is a research topic that has attracted researchers

for years and is still an open topic in the field of statistical machine learning. There are

numerous methods introduced in the literature for determining the optimal number of clus-

ters in a dataset (see for example [Goutte et al., 1999], [Pelleg et al., 2000], [Goutte et al.,

2001], [Lletı et al., 2004], [Honarkhah and Caers, 2010]).

In the presence of independent variable(s), using Cross Validation (CV) is a simple and

popular way for selecting the parameters. We setup an experiment with δβ = (8, 12), σk =

6, and N = 200, where the data was generated using a true K∗ = 4. Then, the training

set is trained using GMR to cluster the groups using K = {2, . . . , 8} and the hold out set

(20%) of the observations from each group is predicted for each case of K = {2, . . . , 8}

and the prediction RMSE is recorded.

The experiment is repeated 250 times and the average prediction RMSE is displayed in

figure 3.3.4. Referring to figure 3.3.4, x axis holds the values ofK that are used to apply the

GMR (K ∈ {2, . . . , 8}) to the data that is in reality generated with K∗ = 4 components.

To compare the performance with baselines, the testing data is predicted using mean (of

the response y) of the training data. The result is corresponding to the case K = 0 in

figure 3.3.4. K = 1 in figure 3.3.4 is the prediction RMSE for the case that a single linear

regression model is fit to the training data and used to predict the response for the testing

dataset. We can clearly see that the error decreases when we start applying GMR at K = 2

versus using the mean prediction (K = 0) and using a single linear model (K = 1), for both
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Figure 3.8: Finding the optimal value of K using cross validation: true K∗ = 4. GMR
is applied with different numbers of K ∈ {1, . . . , 8} and they are shown in x axis in the
graph. K = 0 refers to prediction by mean while K = 1 is the result of prediction using a
single linear regression model.

(δβ = 8 and δβ = 12). The error keeps decreasing until the minimum average prediction

RMSE happens when K = 4, where RMSE starts increasing afterwards. This plot proves

the ability of the algorithm to find the optimal number of components using CV.

3.3.5 Prediction Performance

As noted earlier in chapter 3.1.3, the advantage of GMR over regular FMR is the pos-

terior predictive density that enables us to utilize prior information about the group that a

new observation is coming from. We claim that utilizing this prior knowledge can lead to

a better prediction accuracy. To test the robustness of the prediction power of the model,

we sample data by setting N = 200, K = p = 4, δβ = 8 and train the GMR using

80% of the data in each group. We then predict the remaining 20% first with usual FMR

method and then using GMR prediction. Note that in usual FMR, once the model is trained
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Figure 3.9: Comparing the prediction accuracy using MAP (equation 3.4) (red) versus
regular FMR prediction (blue)

and the parameters of the models are estimated, new observations will be predicted using

the standard mixture model rule. In our group structure setup, we obtain the parameters

θ = (β̂k, σ̂k, πk; k ∈ {1, . . . , K}) in training phase. The prediction using regular FMR is

ynew =
∑K

k=1 πkβ̂
T
k xnew. However, the prediction using predictive density obtained in 3.4

will be yr,new =
∑K

k=1 τrk(θ̂)φσk
(
yr,new− β̂Tk x,newr

)
. The experiment is repeated 250 times

and figure 3.3.5 shows the average RMSE result (y axis is plotted for each value of σk).

It is clear that GMR prediction using MAP outperforms the result when the prior group

membership information is not used (e.g. regular FMR).
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(a) (b) (c)

Figure 3.10: Comparing MMCL++ and GMR: Average NMI value for 250 simulation and
modeling replications (N = 100) for (a) δβ = 4, (b) δβ = 8, (c) δβ = 12

3.3.6 Comparing GMR with MMCL++

To perform a comparison between our two developed algorithms: MMCL++ and GMR,

we ran a simulation and modeling experiment in a way that after generating the data accord-

ing to table 3.1, both algorithms are applied to the same data and the result is recorded (we

increased levels of σk to capture more information). The experiment is repeated 250 times

for each setup. Figure 3.10 illustrates the results for the caseN = 100. We can observe that

GMR outperforms MMCL++ in all cases in terms of correctly recovering the true labels. To

compare and evaluate the prediction power of both algorithms, figure 3.11 is generated to

display the average RMSE value resulted from predicting a hold out (20%) testing dataset

in the same above experiment. This figure reveals that although they become very close in

performance when the uncertainty in the system is very high (σk > 5 and δβ = 4), GMR

performs superior to MMCL++ for predicting new observations in all the other situations.
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(a) (b) (c)

Figure 3.11: Comparing the prediction power of MMCL++ and GMR: Average RMSE
value for 250 simulation and modeling replications (N = 100) for (a) δβ = 4, (b) δβ = 8,
(c) δβ = 12

3.4 Conclusion

In this study, we introduced a solution to Finite Mixture of Regressions (FMR) with

group structure, labeled Group Mixture Regression (GMR). We formulated the Expecta-

tion Maximization in this setup and provided the solution including the updating rules for

parameter estimation. We derived a prediction density that uses prior information about the

group membership of new observations to improve the prediction accuracy.

Monte Carlo simulation and modeling experiments confirm the robustness of the algo-

rithm. Using cross validation, it successfully selected the optimal number of components,

which is in general a very hard task in any clustering technique.

We ran an empirical study to compare GMR to our MMCL++ algorithm and found that

GMR outperforms MMCL++ in both the ability to recover true clusters as well as yielding

higher prediction accuracy.
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CHAPTER 4: MULTI-OBJECTIVE
OPTIMIZATION (MOO)
4.1 Introduction

Having a model for a specific process that depends on some parameters (predictors), it

is often desirable to determine the optimal settings for each of the independent variables

(parameters) so as to attain some desired process performance. Also, in case there are

multiple dependent variables (y1 and y2), a problem arises on how to adjust the parameters

in order to jointly improve the performance of both dependent variables. So, the idea is to

set up an optimization problem to maximize or minimize both y1 and y2 (or to maximize one

and minimize the other, etc.). So, this is a Multi-objective Optimization (MOO) problem

under the condition of multicollinearity of the dependent variables (as well as between the

dependent and independent variables).

Assume that we have a dataset with n observations and two dependent variables: y1

and y2, with predictors {x1, x2, ..., xp}, xi ∈ IRp. Let X denote the matrix of covariates

(the design matrix), X ∈ IRn.p, where there are relations between x′is and (y1, y2). More-

over, we have to check to see if there are relations between the independent variables (xis)

themselves (i.e., strong multicollinearity), and consider (satisfy) these relations when for-

mulating the MOO problem. This is the key requirement in formulating this problem. The

reason is that without considering the multicollinearity among the independent variables,

the model does not account for the fact that the independent variables may effect each other

when changed, and therefore the model and in turn the process would produce incorrect re-
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sults.

4.2 Deriving Recommendations under MMCL: MOO

As noted earlier, the focus of this research is to develop methods that can facilitate im-

provement in the performance of individual stores by relying on a data-driven approach

to internal benchmarking. In particular, the goal is to identify factors driving automotive

dealership performance in comparison with “similar” dealerships and relying on optimiza-

tion to derive tailored recommendations. However, as noted by [Thomas et al., 1998] and

others, more than one performance outcome usually needs to be considered because stores

are responsible for multiple and sometimes conflicting performance measures (e.g., sales

and profits). In addition, it is often the case that KPIs are competing for resources and

cannot be adjusted independently at will (e.g., cash flow constraints might force the dealer

to choose between adding more new vehicle sales staff or more service technicians but not

both).

4.2.1 Formulating MOO

As mentioned in the previous the section, the ultimate goal is to find the optimal val-

ues for the independent parameters in order to jointly improve the dependent variables y1

and y2. Let xi ∈ IRp denote an independent variable. We can setup the multi-objective

optimization problem as follows:

1) Regression: Model relationships between independent (i.e., KPIs) and dependent

variables

Regress y1 and y2 on x1, x2, ..., xp to obtain fy1(x1, x2, . . . , xp) and fy2(x1, x2, ..., xp).
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If linear regression is employed for modeling, the result is:

y1 = fy1(x1, x2, ..., xp) = β0 + β1x1 + β2x2 + · · ·+ βpxp + εy1 (4.1)

y2 = fy2(x1, x2, . . . , xp) = γ0 + γ1x1 + γ2x2 + · · ·+ γpxp + εy2 (4.2)

2) Multicollinearity: Regress each independent variable as a function of remaining in-

dependent variables

Again, in the case of linear regression, we will have:

xi = f(x1, x2, . . . , xr, y1, y2) = αi0 + αi1x1 + αi2x2 + · · ·+ αipxp + εxi αii = 0

(4.3)

3) Optimization: Formulation

The MOO problem can be tackled using several different approaches. The classi-

cal means of solving such problems were primarily focused on scalarizing multiple

objectives into a single objective [Deb and Jain, 2014]. In many cases, there does

not exist a single solution that simultaneously optimizes each objective. In that case,

the objective functions are said to be conflicting, and there exists a (possibly infinite)

number of Pareto optimal solutions. A solution is called nondominated, Pareto opti-

mal, Pareto efficient or noninferior, if none of the objective functions can be improved

in value without degrading some of the other objective values. There exist different

solution philosophies and goals when setting and solving multi-objective optimiza-

tion problems. Both exact and heuristic methods (e.g., genetic algorithms) have been
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extensively investigated in the literature. See [Deb, 2001] for a good overview on the

topic.

Given that our independent and dependent variables are (mostly) continuous and we

have two dependent variables (y1 and y2), there exists a Pareto curve of optimal

solutions. Let us assume that the primary interest is to maximize y1, while satisfying

an acceptable value for y2. We can formulate the problem as follows:

max y1 (4.4a)

s.t. y2 ≥ ỹ2 (4.4b)

y2 = γ0 + γ1x1 + γ2x2 + · · ·+ γpxp (4.4c)

xi = αi0 + αi1x1 + αi2x2 + · · ·+ αipxp) αii = 0 ∀i (4.4d)

The accuracy and effectiveness of the formulation results rely on the accuracy of the

regression models. Since the regression models cannot be assumed to be perfect,

constraints in equation (4.4) are relaxed to take the imperfection of the regression

models into account. For this purpose, we allow slack for the regression models de-

rived constraints proportional to k ∗ σ, where σ denotes regression model standard

error. Small values of k lead to strict constraints, i.e., strong agreement with regres-

sion models at the risk of recommendations that limit performance. To control the

bounds of decision variable, we can (optionally) set bounds for the decision vari-

ables: xi ∈ {xLowerBoundi ;xUpperBoundi }. These bounds can be fine tuned to generate
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the best result. Therefore, the formulation becomes:

max y1 (4.5a)

s.t. y2 ≥ ỹ2 (4.5b)∣∣y2 − (γ0 + γ1x1 + γ2x2 + · · ·+ γpxp)
∣∣ ≤ kσ̂εy2 (4.5c)∣∣xi − (αi0 + αi1x1 + αi2x2 + · · ·+ αipxp)
∣∣ ≤ kσ̂εxi αii = 0 ∀i (4.5d)

xi ∈ {xLowerBoundi ;xUpperBoundi } ∀i (4.5e)

Equation (4.5) considers the fact that the regression models obtained for y2 and xis

are imperfect and, as mentioned earlier, the slack kσ. is added to account for that.

However, it assumes that the function fy1 is the exact relation between the y1 and

xi, i ∈ {1, . . . , p}. In our formulation, we have assumed that fy1(x1, x2, ..., xp) is

also a result of linear regression. Thus, we also have to account for imperfection of

fy1 linear model. To achieve this goal, we introduce an intermediate variable t and
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define t = β0 + β1x1 + β2x2 + · · ·+ βpxp to arrive at the final formulation:

max t (4.6a)

s.t. y2 ≥ ỹ2 (4.6b)∣∣t− (β0 + β1x1 + β2x2 + · · ·+ βpxp)
∣∣ ≤ kσ̂εy1 (4.6c)∣∣y2 − (γ0 + γ1x1 + γ2x2 + · · ·+ γpxp)
∣∣ ≤ kσ̂εy2 (4.6d)∣∣xi − (αi0 + αi1x1 + αi2x2 + · · ·+ αipxp)
∣∣ ≤ kσ̂εxi αii = 0 ∀i (4.6e)

xi ∈ {xLowerBoundi ;xUpperBoundi } ∀i (4.6f)

In equation (4.6), constraints (4.6c–4.6e) are designed to take the imperfection of

the regression models into account and constraints (4.6f) are optional and limit the

decision variables to practical bounds.

4.3 Synthetic Experiments

In this section, a simulation study is performed to evaluate the proposed MOO formu-

lation. Synthetic data is generated to create different scenarios, enabling us to study the

behavior of the algorithm under different scenarios.

4.3.1 Experiment Setup

Denote ε. as a random noise generated by drawing a value from a N (o, 1). Using the

freeware R (see[R Core Team, 2016]), 1000 observations are generated according to the

following setup:

(1) x1, x2, x3, x4 are first drawn from N (o, 1)
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(2) x2 = 0.5x1 + 0.3x4 + εx2

(3) x3 = −0.5x1 + 0.01x2 + εx3

(4) x4 = −0.02x1 + 0.4x2 + 0.3x3 + εx4

(5) y1 = 0.5x1 + 0.1x2 − 0.5x3 − 0.18x4 + εy1

(6) Calculate y2 to generate the following scenarios:

(a) y2 = −0.9x1+1.2x3+0.3x4+εy2 to get a correlation of -0.55 between y1 and y2

(b) y2 = −0.6x1 − 0.08x2 + 0.3x4 + εy2 to get a correlation of -0.39 between

y1 and y2

(c) y2 = −0.2x1−0.1x2 +0.2x3 +0.3x4 + εy2 to get a correlation of -0.25 between

y1 and y2

(d) y2 = −0.35x1 − 0.05x4 + εy2 to get a correlation of -0.1 between y1 and y2

Figure 4.1 shows the correlation between all the variables for each scenario. Beside the

correlation between the dependent and independent variables, you can also observe that

there is strong multicollinearity between the dependent variables (e.g. 0.48 correlation

between x1 and x2 in figure 4.3b.

4.3.2 Results

The simulation is run for different values of k ∈ {0.75, 1, 1.25, 1.5} (in constraints

4.6c–4.6e). By changing the lower bound for ỹ2 (constraint (4.6b)), the pareto optimal

solution is generated for each scenario and each value of k. Figure 4.2 shows the pareto

optimal solution for different scenarios.



www.manaraa.com

56

(a) (b)

(c) (d)

Figure 4.1: Correlation plot for variables in (a) scenario a, (b) scenario b, (c) scenario c,
and (d) scenario d
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(a) (b)

(c) (d)

Figure 4.2: Pareto optimal solution for: (a) scenario a, (b) scenario b, (c) scenario c, and
(d) scenario d
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Referring to figure 4.2, we observe two extreme situations for scenarios a and d(high

and low negative correlation). In scenario a, the pareto is almost linear with slope -0.5,

indicating equal trade off between y1andy2. In scenario d, we can see that there is a very

slow decrease in the optimal value of y2 when increasing y1 (the main objective). This

means that when the two independent variables are not correlated (or weakly correlated),

there is a great opportunity to improve one of the objective functions (e.g. y2) without

sacrificing the other objective. In scenarios b and c, the rate of change for y1 is faster when

ỹ2 is changed. We can also observe how the value of k can shift the pareto solution. With

high values of k, we allow more slack into constraints 4.6c–4.6e. This causes the pareto

solution to move up.

Now that we have obtained an optimal pareto solution, we can solve the optimization

problem with fixed value for k and ỹ2 to obtain the optimal values for each of the inde-

pendent variables. Figure 4.3 shows a solution for scenarios a − d, with k = 1.1, and

ỹ2 ∈ {0.5, 1, 1.5}.

4.4 Conclusion

In this study, we propose a Multi-objective optimization (MOO) method for obtaining

the optimized values in the presence of multicollinearity. The formulation also assumes

that there is negative correlation (trade off) between two objective functions. The situation

may arise in different real world problems such as the trade off between spending money

on advertising by a firm and the returned profit resulting from advertisements. Our formu-

lation is unique in the sense that the relation between the decision variables as well as the

objective function are statistical and are assumed to be estimated (they are imperfect). By
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(a) (b)

(c) (d)

Figure 4.3: Optimal values for variables resulting from solving MOO: (a) scenario a, (b)
scenario b, (c) scenario c, and (d) scenario d
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solving MOO, one can obtain optimal values for decision variables that control both ob-

jective functions, while honoring the relations between decision variables themselves. The

proposed method can be extended relatively easily for the case of more than two objectives.

By running a synthetic data experiment, we demonstrated different scenarios that could

arise in real world problems and showed how the solution changes with regards to changing

the parameters of the formulation.



www.manaraa.com

61

CHAPTER 5: DERIVING
RECOMMENDATIONS FOR
DEALERSHIPS
5.1 Introduction

In this chapter, we present the results from applying the proposed methodologies (MMCL,

GMR, MOO) to a real-world problem in the retail industry. We show how we can utilize

these methodologies in order to provide guidelines and recommendations to improve the

performance of retail stores, in particular, automotive dealerships. We first apply the two

proposed algorithms to fit finite mixture of regression (FMR) models to the dealership

dataset in order to segment/cluster stores while accounting for similarity in store perfor-

mance dynamics. The objective is to cluster the stores into a number of smaller homoge-

neous store groups for benchmarking and deriving more effective recommendations. For

example, it might be inappropriate to benchmark a rural dealer with an urban dealer in a

large metropolitan city. This is above and beyond the normal practice of examining stores

based on regional location. For example, it is a common practice in the U.S. for the au-

tomotive OEMs to look at the continental U.S. as several major regions (e.g., North-East,

Midwest, South-East, South-West, and West) due to significant differences in weather and

other purchasing patterns. While we too recommend regional analysis, there is still room

for improving the performance modeling by further clustering the regional stores into a

number of smaller homogeneous store groups.

We also demonstrate how to use the results of clustering and utilize them in the pro-
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posed MOO (Chapter 4) to derive tailored recommendations and provide guidelines for the

management on how to adjust the KPI levels in order to improve the store performance.

5.2 Dealership Dataset

For reasons of confidentiality, we are not able to reveal the full details about the dataset.

The dataset made available consists of several thousand (3,074) dealerships, with consecu-

tive monthly financial data (observations) for each dealer spanning five years (60 observa-

tions per dealer). Figure 5.1 shows the dealer network across the United States. It shows

how the dealers are distributed and grouped into five regions: Northeast (yellow), Southeast

(red), Great Lakes (blue), Central (gray), and West (black). There were 281 KPIs (inde-

pendent variables) in the monthly financial documents deemed important by the domain

experts. There were a number of missing entries in the financial documents and the result-

ing dataset. The missing values were imputed using matrix completion via soft thresholding

SVD technique, using the “softImpute” package in R [Hastie and Mazumder, 2015]. The

variables are standardized to carry a mean of zero and standard deviation of one (to be

comparable).

To prepare the data for application of MMCL and GMR, the observations for all the

dealers are first aggregated to construct the design matrix X ∈ R3074×281. Since the data

for each dealership is generated for each month, we checked for trend and seasonality

for each dealer and found no evidence that there exists trend or seasonality between the

consecutive months. The reason is that the KPIs are constructed in a way that the trend

and seasonality are absorbed by a special way of normalization. The observations for each

dealer are given a group ID to represent the groups for the purpose of MMCL and GMR.
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Figure 5.1: Network of OEM dealerships in the U.S. Grouped into five regions: Northeast
(golden), Southeast (red), Great Lakes (blue), Central (gray), and West (black)

5.2.1 Applying MMCL and GMR to Dealership Performance Prob-

lem

We focus here on applying the proposed MMCL and GMR methods for modeling the

productivity of automotive dealerships across the U.S. for a particular OEM. Because of

the large size of the dataset and specially the large number of predictors, Least Absolute

Shrinkage and Selection Operator (LASSO) [Tibshirani, 1996] is used for regression mod-

eling of both the sales as well as the profitability of each dealership, for each month. As

discussed in Section 2.3, the main parameters should be selected before running the algo-

rithm. In the case of MMCL (and MMCL++), the parameters are: number of clusters K,

selection of K dealers for initializing the clusters, and LASSO regularizer (λ). To find
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the best values for these parameters, the data is split into training (first four years for each

dealer), and testing (financial data from last year). The parameters are then selected us-

ing cross-validation (CV), by evaluating the quality of the models on predicting the testing

data. The parameters that produced the best result (highestR2 value) on the testing data are

selected. Since MMCL is a heuristic method and the results highly depend on a good start-

ing points (initial dealers), it is a advised to run the algorithm several times for each case

(e.g. fixed λ and K) and pick the initial groups (dealers) that produce the best result. Once

the parameters are selected, the MMCL algorithm is applied to the dataset. It is observed

that in most cases, the algorithm converges in less than 15 iterations.

As for GMR, the only parameter that should be optimized before applying the algorithm

is the number of clusters K. As demonstrated through sythetic simulation experiments in

section 3.3.4, GMR is proved to properly select the true K. The same process is applied to

the dealership dataset to find the best K.

The result is presented in table 5.1. Referring to table 5.1, the reported R2 is the value

obtained by predicting the testing dataset using each model/algorithm. It is reported for

both Profitability (the concern of dealership) and Sales Effectiveness (OEM’s main objec-

tive). The parameter λ (LASSO regulirizer) is the one that produced the highest R2 value

on the testing dataset. We are displaying the result of using three proposed algorithms:

MMCL, MMCL++, and GMR for K ∈ {2, . . . , 10}. The case where K = 1 refers to

fitting a single linear regression to the training dataset. Again, because of the large size of

the data, a LASSO regression is used in this case. The parameter λ is also optimized using

CV.
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As the results suggest,GMR has improved the accuracy for predicting both profitability

and sales effectiveness. It was able to achieve a R2 value of 0.6 using K = 9 and K = 10,

whereas a single model’s R2 is 0.51, a 9% improvement. The highest R2 that MMCL

was able to achieve for profitability is 0.51, equal to what is achieved by a single model.

MMCL++ was able to slightly improve the result to obtain R2 value of 0.52 (with K = 4

and K = 6). In the case of SE, a single model is able to produce a R2 value of 0.12.

However, GMR was able to improve this value to 0.17 (41% improvement) with K = 9.

MMCL and MMCL++ also produced the same result with K = 5. This result also suggests

that there is heterogeneity among the dealers and by clustering them, one can improve the

analysis and generate better recommendations to dealers for improving their performance.

Figure 5.2 summarizes the result on one plot. Since MMCL++ has been equal or su-

perior in performance compared to MMCL, we are only showing MMCL++ versus GMR.

Reviewing figure 5.2, we can conclude that if GMR is used, we should ideally cluster the

dealers into 9 groups where the models show highest R2 value for both Profitability and

Sales Effectiveness. In case of modeling with MMCL++, it is best to partition the dealers

into 4 clusters.

It should be mentioned that in large datasets such our dealership problem, MMCL ap-

proach is computationally more expensive. This is in general true when the number of

groups is large, because the algorithm has to extract, model, and evaluate the results of all

groups in every iteration. This becomes more problematic if we know that we have to find

the parameters of the models as well as best starting point (e.g. initial groups) using CV,

because the algorithm has to be applied several times to find the best result. This is not
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(a) (b)

Figure 5.2: Results from applying MMCL++, and GMR on dealership dataset with two
dependent variables: (a) Profitability and (b) Sales Effectiveness. The horizontal black
dashed line is R2 value for a single LASSO model.

the case for GMR, for it had no problem handling and producing the result of such a large

dataset in seconds.

5.2.2 Assessing the Clusters

To evaluate the clusters resulted as the output of GMR, we applied GMR to a subset

of the data (a sub-group defined by domain experts). The number of clusters K is set to

2. The following plots are produced to visually evaluate the effectiveness of the formed

clusters. Figure 5.3 shows the average value for two of the most important KPIs (with

highest regression model coefficients), plotted for two clusters (cluster 1 red, cluster 2

blue). Note that independent variables are standardized to carry a mean of zero and standard

deviation of one (to be comparable).

As shown in figure 5.3, the average value of KPI #1 in figure 5.3a is clearly different

between the two clusters and cluster 2 (red) tends to contain the dealers that have a smaller

value in that particular KPI. In the case of the KPI #2 in figure 5.3b, there are some months
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Table 5.1: Result of applying MMCL, MMCL++, and GMR to dealership data

Profitability Sales Effectiveness

# of Clusters (K) Algorithm Model Parameters R2 Model Parameters R2

1 Single LASSO λ = 0.036 0.51 λ = 0.051 0.12

2
MMCL

MMCL++
GMR

λ = 0.005
λ = 0.001

NA

0.51
0.51
0.58

λ = 0.005
λ = 0.001

NA

0.10
0.13
0.09

3
MMCL

MMCL++
GMR

λ = 0.015
λ = 0.011

NA

0.5
0.51
0.58

λ = 0.011
λ = 0.011

NA

0.10
0.11
0.13

4
MMCL

MMCL++
GMR

λ = 0.031
λ = 0.031

NA

0.51
0.52
0.58

λ = 0.015
λ = 0.011

NA

0.13
0.16
0.11

5
MMCL

MMCL++
GMR

λ = 0.005
λ = 0.005

NA

0.5
0.5

0.59

λ = 0.011
λ = 0.015

NA

0.17
0.17
0.11

6
MMCL

MMCL++
GMR

λ = 0.005
λ = 0.011

NA

0.5
0.52
0.59

λ = 0.015
λ = 0.021

NA

0.15
0.16
0.11

7
MMCL

MMCL++
GMR

λ = 0.011
λ = 0.021

NA

0.49
0.49
0.6

λ = 0.011
λ = 0.001

NA

0.14
0.14
0.11

8
MMCL

MMCL++
GMR

λ = 0.021
λ = 0.031

NA

0.48
0.5

0.59

λ = 0.025
λ = 0.031

NA

0.14
0.15
0.16

9
MMCL

MMCL++
GMR

λ = 0.035
λ = 0.011

NA

0.44
0.48
0.6

λ = 0.025
λ = 0.031

NA

0.13
0.13
0.17

10
MMCL

MMCL++
GMR

λ = 0.025
λ = 0.021

NA

0.45
0.45
0.6

λ = 0.011
λ = 0.005

NA

0.13
0.13
0.16
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(a) (b)

Figure 5.3: Assessing the clusters formed by GMR in the KPI space. The average value
for each month and year is displayed for Cluster 1 (red) and Cluster 2 (blue) (a) KPI #1 (b)
KPI #2

that the two clusters have overlapped, but the two clusters still seem to be different. Figure

5.4 shows box plots for two other important KPIs, separated by the clusters. This figure

also proves the effectiveness of GMR in forming two clusters with members with different

KPI ranges.

5.2.3 Applying MOO for Dealership Performance Improvement

As noted earlier, there are two dealer performance characteristics of interest: Profitabil-

ity (P : y1) and Sales Effectiveness (SE: y2). It is desired that both y1 and y2 be maximized

for every dealer to improve the profitability of the dealership and satisfy the needs of the

OEM in selling more new vehicles. We call our design matrix X ∈n×p

To apply the MOO, we first regress P (y1) against X to obtain:

P = fP (x1, . . . , xp) = β0 + β1x1 + β2x2 + · · ·+ βpxp + εP (5.1)
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(a) (b)

Figure 5.4: Box Plot for assessing the clusters formed by GMR in the KPI space. Values
for each month and year is displayed for Cluster 1 (green) and Cluster 2 (gray) (a) KPI #3
(b) KPI #4

where fP (x1, . . . , xp) is the objective function that we want to maximize (ignoring the error

term εP ). We then regress y2 against X to obtain the constraint that explains the relation

between y2 and xis:

SE = fSE(x1, x2, . . . , xp) = γ0 + γ1x1 + γ2x2 + · · ·+ γpxp + εSE (5.2)

Also, to guarantee that SE stays in the accepted range enforced by OEM, we add the

following constraint:

SE ≥ S̃E

Lastly, we regress each xi against other xjs (i 6= j), to account for the multicollinearity

constraints. As explained in Section 4.2, to consider the fact that the regression models are

imperfect, we allow a slack of k ∗ σε for each regression model. The client also provided
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(a) (b)

Figure 5.5: Pareto optimal frontier for a specific dealership group: (a) Blue dots report
average SE and P for dealers; benchmark dealer is shown in red. (b) Zoomed-in region of
Pareto optimal frontier

valid bounds for each of the predictor variables but are not reported here for confidentiality.

Assuming t = fP (x1, . . . , xp), the final formulation takes the following form:

max t (5.3a)

s.t. SE ≥ S̃E (5.3b)∣∣P − (β0 + β1x1 + β2x2 + · · ·+ βpxp)
∣∣ ≤ kσ̂εP (5.3c)∣∣SE − (γ0 + γ1x1 + γ2x2 + · · ·+ γpxp)
∣∣ ≤ kσ̂εSE

(5.3d)∣∣xi − (αi0 + αi1x1 + αi2x2 + · · ·+ αipxp)
∣∣ ≤ kσ̂εxi αii = 0 ∀i (5.3e)

5.2.4 Generating Pareto Optimal Frontier

To construct the Pareto optimal front for each dealership group, the formulation above is

solved repeatedly by changing the value of S̃E to obtain the Pareto optimal points for P and

SE, as reported in Figure 5.5a. This result identifies what is potentially possible in terms
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(a) (b)

Figure 5.6: Comparing derived recommendations for a reference dealership group (green)
with the operations of a well performing dealer (red). (a) S̃E = 1.0 (b) S̃E = 1.5

of performance for the dealers within the reference group. As expected, the frontier also

reveals the trade-off between how much profit a dealer can generate (using all the potential

resources such as new and used vehicle sales, service, body shop, parts, etc.) versus new

vehicle sales (not as profitable these days with respect to other dealership operations such

as service and used vehicle sales).

5.2.5 Assessing the Quality of Recommendations Derived through MOO

To further assess the effectives of the proposed methods, we compared the operational

signature of a high performance dealership with the recommendations derived through

MOO, as reported in Figure 5.5a. Radar charts are generated for some of the important

KPIs (xis) for different values of S̃E (see Figure 5.6). The reasonable agreement between

the two sets of KPI values between the high performance dealer and the derived recommen-

dations further validate the effectiveness of our proposed algorithm. For example, it can
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(a)
(b)

Figure 5.7: Gradual improvement path for (a) a successful dealer, and (b) a weak dealer

be seen that if a dealer in the reference group wants to achieve a better SE (on average),

they have to on average lower KPI8 and KPI16, and increase KPI6. The recommended

KPI levels can be compared with each dealer within the group in order to show the poten-

tial strengths and deficiencies of that dealer. It provides tailored guidance for the dealership

management on how to manage and operate their business in order to simultaneously please

the OEM by selling new vehicles (keep SE in an acceptable range) and also increase their

profits. Figure 5.8 shows how the optimal KPI values change with changing S̃E.

5.2.6 Gradual Improvement Paths for Dealers

The formulation shown in equation 5.3 while satistying the constraints, maximizes the

objective function (profitability) as much as possible. This means that we provide the

same set of recommendations to a weak dealer (i.e. a dealer on bottom left corner in

figure 5.5a and a strong and successful dealer ((i.e. a dealer on top right corner in figure

5.5a to maximize their profitability to the same amount. In reality however, it may not

be realistic for weak dealers to adjust their KPIs according to optimal values and achieve
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Figure 5.8: KPIs optimal values for diggerent values of S̃E

a profitability/SE that is far from their current performance. To overcome this issue, we

change the formulation and bound the profit (P in equation (5.3)) as well as SE, so that

we can control the increase in profit that can be achieved by analyzing the abilities of a

particular dealer. The new formulation is displayed in equation (5.4)

Figure 5.7 shows how we can set goals for both SE and P for generating recommen-

dations based on specific needs of dealers. Note that this plot is generated for the case that

both S̃E and P̃ are set to be equal. Obviously, the choice is not limited to that and we can

set any bounds for (SE,P ) pair to control in what directions (and by how much) a dealer
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wishes (needs) to improve.

max t (5.4a)

s.t. P ≤ P̃ (5.4b)

SE ≥ S̃E (5.4c)∣∣P − (β0 + β1x1 + β2x2 + · · ·+ βpxp)
∣∣ ≤ kσ̂εP (5.4d)∣∣SE − (γ0 + γ1x1 + γ2x2 + · · ·+ γpxp)
∣∣ ≤ kσ̂εSE

(5.4e)∣∣xi − (αi0 + αi1x1 + αi2x2 + · · ·+ αipxp)
∣∣ ≤ kσ̂εxi αii = 0 ∀i (5.4f)

Another issue is that the current regression models that account for objective functions

constraints as well as constraints are found using the data from all the dealers (in a cluster).

This approach may be problematic in that better dealers are being averaged with weaker

ones to find the regression models and generate recommendations. Therefore, it is better to

define which dealers should be grouped together (in terms of their performance on both SE

and profitability) to develop the regression models and generate recommendations through

MOO. Two possible solutions are illustrated in figure 5.9. It shows an average dealer

(shown in red with its ID number), where in figure 5.9a, only the dealers whose SE and

ROS average are higher in a 90° direction are selected. In this case, only the data from

these dealers are used to construct the regression models (used by MOO). This approach

ensures that a dealer will not be mixed with other dealers who on average are weaker

than him in performance. Figure 5.9b is another possible way to define and select ”better

dealers” by using a 30° cone. It is obvious that the choice of defining better dealers is not
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(a) (b)

Figure 5.9: Modeling with better dealers: (a) 90° solution (b) 30° solution

limited to the above, and can be customized by the needs recognized by domain experts.

5.3 Conclusion

Increasing availability of data combined with improvements in computational platforms

and technology is enabling more comprehensive and in-depth data analysis in the world of

business. In the retail sector, individual stores need to utilize the available data to improve

both their efficiency and effectiveness for survival and dominance. We propose an inclusive

data-driven analytics platform for benchmarking and optimizing retail store performance.

The proposed methodology segments stores using model based clustering.

Tailored recommendations for individual stores are extracted from associated FMR

models by solving a multi-objective optimization problem to improve the profitability while

controlling other performance metrics to meet the expectations of different stakeholders.
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CHAPTER 6: CONCLUSION AND
DIRECTIONS FOR FUTURE
RESEARCH

The main objective for this dissertation was to develop a complete data-driven platform

for analyzing, processing, and modeling data from retail industry in order to understand

the behavior of network of stores and provide scientific managerial guidance on how to

improve and operate an individual as well as groups of stores. To achieve this goal, we

addressed the problem of mixture models with group structure, and noted that this has

not been addressed in the literature with the existence of a dependent variable (mixture of

regressions with group structure). We propose two methods to solve this problem: Mixture

Models with Competitive Learning (MMCL) and Group Mixture of Regression (GMR)

models.

MMCL is an iterative, heuristic algorithm based on Competitive Learning to cluster

groups of observations and provide a model for each group. It is a non parametric approach

that can be combined with any underlying regression modeling technique. We introduced

an extension to MMCL called MMCL++ to smartly select the initial groups.

On the other hand, GMR provides a solution to this problem by employing Expectation

Maximization to find the maximum likelihood estimate for the parameters of the model.

The strength of this approach is its robustness and accuracy to recover true clusters (proved

by running synthetic experiments), and Maximum a Posterior (MAP) prediction density

that utilizes the prior group membership information to improve the accuracy of prediction.

The effectiveness of both algorithms (MMCL and GMR) are demonstrated using syn-
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thetic experiments as well as the retail (automotive dealership) case study.

The other contribution of this dissertation is the development of a multi-objective op-

timization (MOO) formulation for deriving recommendations in retail application settings

under the result of clustering formed by mixture of regressions with group structure. We

also present a real-world case study from automotive industry that aims to improve the

performance of a dealership network.

There are several avenues for potential future research. The current version of GMR

assumes that the covariates (features) are deterministic. This assumption can be extended

to develop a model that treats the covariates as random variables. It can also be extended

to Generalized Linear Models (GLM) as the assumption for the relation between the inde-

pendent and dependent variables.

As for MMCL, it can be improved to be combined with recommendation process, mean-

ing to judge the models based on the quality of recommendations. This can be an online

reinforcement learning framework that assesses the result of recommendation and utilizes

the result and feedback to adjust and improve the models.

Finally, current MOO formulation can be extended to form a pure multi-objective op-

timization formulation that jointly optimizes both objective functions (rather than maxi-

mizing a single objective while imposing constraints on the performance of the remaining

objectives).

We believe that this research is a good starting point for developing an intensive and

complete process for benchmarking and managing the performance of retail stores.
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APPENDIX A: EM UPDATES IN ALGORITHM 3

Expanding the expected log-likelihood (3.6) using the definition of γrk(θ) in (3.3), we

have

F (θ; θ̂) = Ez∼τ(θ̂)[`(θ; z)] =
K∑
k=1

τ+k(θ̂) log πk +
R∑
r=1

K∑
k=1

nr∑
i=1

τrk(θ̂) log φσk
(
yri − βTk xri

)
.

(1)

where φσ(t) := (2πσ2)−1/2 exp(−1
2
t2/σ2) is the density of N(0, σ2).

We would like to maximize (1) over θ. Recall that βk, xri ∈ Rp where p is the number

of features. We will use .
=π for example, when the two sides are equal up to additive

constants, as functions of π. Fixing everything and maximizing over π = (π1, . . . , πk), we

are maximizing π 7→
∑

k τ+k(θ̂) log πk over probability vector π. This is the MLE in the

multinomial family and the solution is πk ∝k τ+k, that is

πk =
τ+k∑
k′ τ+k′

=
τ+k
R

(2)

where we used
∑

k′ τ+k′ =
∑

k′
∑

r τrk′ =
∑

r

∑
k′ τrk′ =

∑
r 1 = R, since for fixed r, τrk

sums to 1 over k.

To maximize over β, we again fix everything else. Since log φσ(t)
.
=t −1

2
(log σ2 +
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t2/σ2), we are maximizing

F (θ; θ̂)
.
=β −

∑
r

∑
k

nr∑
i

τrk(θ̂)
1

2σ2
k

(yri − βTk xri)2

.
=β −

∑
r

∑
k

nr∑
i

τrk(θ̂)
1

2σ2
k

[(βTk xri)
2 − 2yriβ

T
k xri] (3)

ignoring the constant terms generated by y2ri. Note that (βTk xri)
2 = (βTk xri)(x

T
riβk) =

βTk (xrix
T
ri)βk. Similarly, yriβTk xri = βTk (yrixri). Let us define

Σ̂r :=
1

nr

nr∑
i=1

xrix
T
ri, ρ̂r :=

1

nr

nr∑
i=1

yrixri (4)

Summing over i first in (3), we get

F (θ; θ̂)
.
=β −

∑
r

∑
k

τrk
2σ2

k

nr[β
T
k Σ̂rβk − 2βTk ρ̂r]

= −
∑
k

1

2σ2
k

∑
r

τrknr[β
T
k Σ̂rβk − 2βTk ρ̂r] (5)

Let us define wrk := nrτrk and w̌rk := wrk/w+k where w+k =
∑

r nrτrk, and let

Σ̃k :=
R∑
r=1

w̌rkΣ̂r, ρ̃k :=
R∑
r=1

w̌rkρ̂r. (6)

Dividing and multiplying byw+k and summing over r in (5), we getF (θ; θ̂)
.
=β −

∑
k
w+k

2σ2
k

[βTk Σ̃kβk−

2βTk ρ̃k]. The problem is separable in k, and the minimizer over βk is βk = Σ̃−1k ρ̃k.
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To optimize over αk := σ2
k, let us fix everything else. We have

F (θ; θ̂)
.
=α −

1

2

∑
k

[∑
r

nr∑
i

τrk logαk +
∑
r

nr∑
i

τrk
(yri − βTk xri)2

αk

]
. (7)

The first term in brackets is (
∑

r nrτrk) logαk = w+k logαk. Defining

Erk := Erk(β) :=
1

nr

nr∑
i

(yri − βTk xri)2, Ek := Ek(β) :=
∑
r

w̌rkErk. (8)

we see that the second term in brackets in (7) is just w+kEk. We have

F (θ; θ̂)
.
=α −

1

2

∑
k

w+k

[
logαk +

Ek

αk

]
(9)

This problem is separable in αk and the solution is αk = Ek. Putting the pieces together,

we obtain the Algorithm 3.
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APPENDIX B: DETAILS OF CALCULATING β ERROR

Let Ĉk ⊂ [R] be the kth estimated cluster (the set containing indices of the groups

estimated to be in cluster k) and ẑr ∈ {0, 1}K the estimated membership vector for group

r, so that ẑrk = 1{r ∈ Ĉk}. Similarly, let Ck ⊂ [R] be the true cluster k and zr the true

label vector for group r, so that zrk = 1{zr ∈ Ck}. The normalized confusion matrix

F = (Fk`) ∈ [0, 1]K×K between the two sets of labels is given by Fk` = 1
R

∑R
r=1 zrk ẑr` =

1
R

∑
r=1 1{r ∈ Ck, r ∈ Ĉ`}. We have

1

R

R∑
r=1

‖β̂(r) − β(r)‖2 =
1

R

R∑
r=1

[ K∑
k,`=1

1{r ∈ Ck, r ∈ Ĉ`}
]
‖β̂(r) − β(r)‖2

=
K∑

k,`=1

1

R

R∑
r=1

1{r ∈ Ck, r ∈ Ĉ`}‖β̂(r) − β(r)‖2

=
K∑

k,`=1

1

R

R∑
r=1

1{r ∈ Ck, r ∈ Ĉ`}‖β̂` − βk‖2

=
K∑

k,`=1

‖β̂` − βk‖2
1

R

R∑
r=1

1{r ∈ Ck, r ∈ Ĉ`}

=
∑
k,r

DkrFkr = tr(DTF )

as desired.
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gium, 2005.

Zhaohao Sun, Kenneth Strang, and Sally Firmin. Business analytics-based enterprise in-

formation systems. Journal of Computer Information Systems, 57(2):169–178, 2017.

http://dx.doi.org/10.1057/jt.2008.9
http://dx.doi.org/10.1057/jt.2008.9


www.manaraa.com

90

Rhonda R Thomas, Richard S Barr, William L Cron, and John W Slocum. A process for

evaluating retail store efficiency: a restricted dea approach. International Journal of

Research in Marketing, 15(5):487–503, 1998.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society. Series B (Methodological), pages 267–288, 1996.

Michael Tuma and Reinhold Decker. Finite mixture models in market segmentation: A re-

view and suggestions for best practices. Electronic Journal of Business Research Meth-

ods, 11(1):2–15, 05 2013a.

Michael Tuma and Reinhold Decker. Finite mixture models in market segmentation: a re-

view and suggestions for best practices. Electronic Journal of Business Research Meth-

ods, 11(1), 2013b.

Dany Vyt. Retail network performance evaluation: a dea approach considering retailers’

geomarketing. International Review of Retail, 18(2):235–253, 2008.

Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained k-means clus-
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Growing competitiveness and increasing availability of data is generating tremendous

interest in data-driven analytics across industries. In the retail sector, stores need targeted

guidance to improve both the efficiency and effectiveness of individual stores based on

their specific location, demographics, and environment. We propose an effective data-

driven framework for internal benchmarking that can lead to targeted guidance for indi-

vidual stores. In particular, we propose an objective method for segmenting stores using a

model-based clustering technique that accounts for similarity in store performance dynam-

ics. It relies on effective Finite Mixture of Regression (FMR) techniques for carrying out

the model-based clustering with grouping structure (‘must-link’ constraints) and modeling

store performance. We propose two alternate methods for FMR with grouping structure: 1)

Competitive Learning (CL) and 2) Expectation Maximization (EM). The CL method can

support both linear and non-linear regression methods whereas the more effective proposed
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EM approach only supports linear regression.

We also propose an optimization framework to derive tailored recommendations for

individual stores within store clusters that jointly improves profitability for the store while

also improving sales to satisfy franchiser requirements. We validate the methods using

synthetic experiments as well as a real-world automotive dealership network study for a

leading global automotive manufacturer.
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